Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 825
Filter
1.
Radiat Res ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38724886

ABSTRACT

Carbon-ion irradiation is increasingly used at the skull base and spine near the radiation-sensitive spinal cord. To better characterize the in vivo radiation response of the cervical spinal cord, radiogenic changes in the high-dose area were measured in rats using magnetic resonance imaging (MRI) diffusion measurements in comparison to conventional photon irradiations. In this longitudinal MRI study, we examined the gray matter (GM) of the cervical spinal cord in 16 female Sprague-Dawley rats after high-dose photon (n = 8) or carbon-ion (12C) irradiation (n = 8) and in 6 sham-exposed rats until myelopathy occurred. The differences in the diffusion pattern of the GM of the cervical spinal cord were examined until the endpoint of the study, occurrence of paresis grade II of both forelimbs was reached. In both radiation techniques, the same order of the occurrence of MR-morphological pathologies was observed - from edema formation to a blood spinal cord barrier (BSCB) disruption to paresis grade II of both forelimbs. However, carbon-ion irradiation showed a significant increase of the mean apparent diffusion coefficient (ADC; P = 0.031) with development of a BSCB disruption in the GM. Animals with paresis grade II as a late radiation response had a highly significant increase in mean ADC (P = 0.0001) after carbon-ion irradiation. At this time, a tendency was observed for higher mean ADC values in the GM after 12C irradiation as compared to photon irradiation (P = 0.059). These findings demonstrated that carbon-ion irradiation leads to greater structural damage to the GM of the rat cervical spinal cord than photon irradiation due to its higher linear energy transfer (LET) value.

2.
JHEP Rep ; 6(6): 101063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38737600

ABSTRACT

Background & Aims: Inoperable hepatocellular carcinoma (HCC) can be treated by stereotactic body radiotherapy. However, carbon ion radiotherapy (CIRT) is more effective for sparing non-tumorous liver. High linear energy transfer could promote therapy efficacy. Japanese and Chinese studies on hypofractionated CIRT have yielded excellent results. Because of different radiobiological models and the different etiological spectrum of HCC, applicability of these results to European cohorts and centers remains questionable. The aim of this prospective study was to assess safety and efficacy and to determine the optimal dose of CIRT with active raster scanning based on the local effect model (LEM) I. Methods: CIRT was performed every other day in four fractions with relative biological effectiveness (RBE)-weighted fraction doses of 8.1-10.5 Gy (total doses 32.4-42.0 Gy [RBE]). Dose escalation was performed in five dose levels with at least three patients each. The primary endpoint was acute toxicity after 4 weeks. Results: Twenty patients received CIRT (median age 74.7 years, n = 16 with liver cirrhosis, Child-Pugh scores [CP] A5 [n = 10], A6 [n = 4], B8 [n = 1], and B9 [n = 1]). Median follow up was 23 months. No dose-limiting toxicities and no toxicities exceeding grade II occurred, except one grade III gamma-glutamyltransferase elevation 12 months after CIRT, synchronous to out-of-field hepatic progression. During 12 months after CIRT, no CP elevation occurred. The highest dose level could be applied safely. No local recurrence developed during follow up. The objective response rate was 80%. Median overall survival was 30.8 months (1/2/3 years: 75%/64%/22%). Median progression-free survival was 20.9 months (1/2/3 years: 59%/43%/43%). Intrahepatic progression outside of the CIRT target volume was the most frequent pattern of progression. Conclusions: CIRT of HCC yields excellent local control without dose-limiting toxicity. Impact and implications: To date, safety and efficacy of carbon ion radiotherapy for hepatocellular carcinoma have only been evaluated prospectively in Japanese and Chinese studies. The optimal dose and fractionation when using the local effect model for radiotherapy planning are unknown. The results are of particular interest for European and American particle therapy centers, but also of relevance for all specialists involved in the treatment and care of patients with hepatocellular carcinoma, as we present the first prospective data on carbon ion radiotherapy in hepatocellular carcinoma outside of Asia. The excellent local control should encourage further use of carbon ion radiotherapy for hepatocellular carcinoma and design of randomized controlled trials. Clinical Trials Registration: The study is registered at ClinicalTrials.gov (NCT01167374).

3.
Med Phys ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656549

ABSTRACT

BACKGROUND: The pursuit of adaptive radiotherapy using MR imaging for better precision in patient positioning puts stringent demands on the hardware components of the MR scanner. Particularly in particle therapy, the dose distribution and thus the efficacy of the treatment is susceptible to beam attenuation from interfering materials in the irradiation path. This severely limits the usefulness of conventional imaging coils, which contain highly attenuating parts such as capacitors and preamplifiers in an unknown position, and requires development of a dedicated radiofrequency (RF) coil with close consideration of the materials and components used. PURPOSE: In MR-guided radiation therapy in the human torso, imaging coils with a large FOV and homogeneous B1 field distribution are required for reliable tissue classification. In this work, an imaging coil for MR-guided particle therapy was developed with minimal ion attenuation while maintaining flexibility in treatment. METHODS: A birdcage coil consisting of nearly radiation-transparent materials was designed and constructed for a closed-bore 1.5 T MR system. Additionally, the coil was mounted on a rotatable patient capsule for flexible positioning of the patient relative to the beam. The ion attenuation of the RF coil was investigated in theory and via measurements of the Bragg peak position. To characterize the imaging quality of the RF coil, transmit and receive field distributions were simulated and measured inside a homogeneous tissue-simulating phantom for various rotation angles of the patient capsule ranging from 0° to 345° in steps of 15°. Furthermore, simulations with a heterogeneous human voxel model were performed to better estimate the effect of real patient loading, and the RF coil was compared to the internal body coil in terms of SNR for a full rotation of the patient capsule. RESULTS: The RF coil (total water equivalent thickness (WET) ≈ 420 µm, WET of conductor ≈ 210 µm) can be considered to be radiation-transparent, and a measured transmit power efficiency (B1 +/ P $\sqrt {\mathrm{P}} $ ) between 0.17 µT/ W $\sqrt {\mathrm{W}} $ and 0.26 µT/ W $\sqrt {\mathrm{W}} $ could be achieved in a volume (Δz = 216 mm, complete x and y range) for the 24 investigated rotation angles of the patient capsule. Furthermore, homogeneous transmit and receive field distributions were measured and simulated in the transverse, coronal and sagittal planes in a homogeneous phantom and a human voxel model. In addition, the SNR of the radiation-transparent RF coil varied between 103 and 150, in the volume (Δz = 216 mm) of a homogeneous phantom and surpasses the SNR of the internal body coil for all rotation angles of the patient capsule. CONCLUSIONS: A radiation-transparent RF coil was developed and built that enables flexible patient to beam positioning via full rotation capability of the RF coil and patient relative to the beam, with results providing promising potential for adaptive MR-guided particle therapy.

4.
BMC Cancer ; 24(1): 449, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605332

ABSTRACT

BACKGROUND: While surgical resection remains the primary treatment approach for symptomatic or growing meningiomas, radiotherapy represents an auspicious alternative in patients with meningiomas not safely amenable to surgery. Biopsies are often omitted in light of potential postoperative neurological deficits, resulting in a lack of histological grading and (molecular) risk stratification. In this prospective explorative biomarker study, extracellular vesicles in the bloodstream will be investigated in patients with macroscopic meningiomas to identify a biomarker for molecular risk stratification and disease monitoring. METHODS: In total, 60 patients with meningiomas and an indication of radiotherapy (RT) and macroscopic tumor on the planning MRI will be enrolled. Blood samples will be obtained before the start, during, and after radiotherapy, as well as during clinical follow-up every 6 months. Extracellular vesicles will be isolated from the blood samples, quantified and correlated with the clinical treatment response or progression. Further, nanopore sequencing-based DNA methylation profiles of plasma EV-DNA will be generated for methylation-based meningioma classification. DISCUSSION: This study will explore the dynamic of plasma EVs in meningioma patients under/after radiotherapy, with the objective of identifying potential biomarkers of (early) tumor progression. DNA methylation profiling of plasma EVs in meningioma patients may enable molecular risk stratification, facilitating a molecularly-guided target volume delineation and adjusted dose prescription during RT treatment planning.


Subject(s)
Extracellular Vesicles , Meningeal Neoplasms , Meningioma , Humans , Meningioma/surgery , Meningeal Neoplasms/surgery , Prospective Studies , Liquid Biopsy , Biomarkers , Extracellular Vesicles/pathology
5.
Med Phys ; 51(5): 3782-3795, 2024 May.
Article in English | MEDLINE | ID: mdl-38569067

ABSTRACT

BACKGROUND: Interpatient variation of tumor radiosensitivity is rarely considered during the treatment planning process despite its known significance for the therapeutic outcome. PURPOSE: To apply our mechanistic biophysical model to investigate the biological robustness of carbon ion radiotherapy (CIRT) against DNA damage repair interference (DDRi) associated patient-to-patient variability in radiosensitivity and its potential clinical advantages against conventional radiotherapy approaches. METHODS AND MATERIALS: The "UNIfied and VERSatile bio response Engine" (UNIVERSE) was extended by carbon ions and its predictions were compared to a panel of in vitro and in vivo data including various endpoints and DDRi settings within clinically relevant dose and linear energy transfer (LET) ranges. The implications of UNIVERSE predictions were then assessed in a clinical patient scenario considering DDRi variance. RESULTS: UNIVERSE tests well against the applied benchmarks. While in vitro survival curves were predicted with an R2 > 0.92, deviations from in vivo RBE data were less than 5.6% The conducted paradigmatic patient plan study implies a markedly reduced significance of DDRi based radiosensitivity variability in CIRT (13% change of D 50 ${{D}_{50}}$ in target) compared to conventional radiotherapy (62%) and that boosting the LET within the target further amplifies this robustness of CIRT (8%). In the case of heightened tumor radiosensitivity, a dose de-escalation strategy for photons allows a reduction of the maximum effective dose within the normal tissue (NT) from a D 2 ${{D}_2}$ of 2.65 to 1.64 Gy, which lies below the level found for CIRT ( D 2 ${{D}_2}$  = 2.41 Gy) for the analyzed plan and parameters. However, even after de-escalation, the integral effective dose in the NT is found to be substantially higher for conventional radiotherapy in comparison to CIRT ( D m e a n ${{D}_{mean}}$ of 0.75, 0.46, and 0.24 Gy for the conventional plan, its de-escalation and CIRT, respectively). CONCLUSIONS: The framework offers adequate predictions of in vitro and in vivo radiation effects of CIRT while allowing the consideration of DRRi based solely on parameters derived from photon data. The results of the patient planning study underline the potential of CIRT to minimize important sources of interpatient divergence in therapy outcome, especially when combined with techniques that allow to maximize the LET within the tumor. Despite the potential of de-escalation strategies for conventional radiotherapy to reduce the maximum effective dose in the NT, CIRT appears to remain a more favorable option due to its ability to reduce the integral effective dose within the NT.


Subject(s)
DNA Damage , DNA Repair , Heavy Ion Radiotherapy , Radiation Tolerance , Humans , DNA Repair/radiation effects , Models, Biological , Linear Energy Transfer
6.
Cancers (Basel) ; 16(8)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38672579

ABSTRACT

BACKGROUND: Pancreatic cancer is one of the most aggressive and lethal cancers. New treatment strategies are highly warranted. Particle radiotherapy could offer a way to overcome the radioresistant nature of pancreatic cancer because of its biological and physical characteristics. Within particles, helium ions represent an attractive therapy option to achieve the highest possible conformity while at the same time protecting the surrounding normal tissue. The aim of this study was to evaluate the cytotoxic efficacy of helium ion irradiation in pancreatic cancer in vitro. METHODS: Human pancreatic cancer cell lines AsPC-1, BxPC-3 and Panc-1 were irradiated with photons and helium ions at various doses and treated with gemcitabine. Photon irradiation was performed with a biological cabin X-ray irradiator, and helium ion irradiation was performed with a spread-out Bragg peak using the raster scanning technique at the Heidelberg Ion Beam Therapy Center (HIT). The cytotoxic effect on pancreatic cancer cells was measured with clonogenic survival. The survival curves were compared to the predicted curves that were calculated via the modified microdosimetric kinetic model (mMKM). RESULTS: The experimental relative biological effectiveness (RBE) of helium ion irradiation ranged from 1.0 to 1.7. The predicted survival curves obtained via mMKM calculations matched the experimental survival curves. Mainly additive cytotoxic effects were observed for the cell lines AsPC-1, BxPC-3 and Panc-1. CONCLUSION: Our results demonstrate the cytotoxic efficacy of helium ion radiotherapy in pancreatic cancer in vitro as well as the capability of mMKM calculation and its value for biological plan optimization in helium ion therapy for pancreatic cancer. A combined treatment of helium irradiation and chemotherapy with gemcitabine leads to mainly additive cytotoxic effects in pancreatic cancer cell lines. The data generated in this study may serve as the radiobiological basis for future experimental and clinical works using helium ion radiotherapy in pancreatic cancer treatment.

7.
Radiat Oncol ; 19(1): 42, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38553768

ABSTRACT

BACKGROUND: Solitary fibrous tumors (SFT) of the central nervous system are rare and treatment options are not well established. The aim of this study was to evaluate the clinical outcomes of radiotherapy (RT) and re-radiotherapy (re-RT) for de novo intracranial SFT and recurrent intracranial SFT. METHODS: This retrospective study analyzed efficacy and toxicity of different RT modalities in patients who received radiotherapy (RT) for intracranial SFT at Heidelberg University Hospital between 2000 and 2020 following initial surgery after de novo diagnosis ("primary group"). We further analyzed the patients of this cohort who suffered from tumor recurrence and received re-RT at our institution ("re-irradiation (re-RT) group"). Median follow-up period was 54.0 months (0-282) in the primary group and 20.5 months (0-72) in the re-RT group. RT modalities included 3D-conformal RT (3D-CRT), intensity-modulated RT (IMRT), stereotactic radiosurgery (SRS), proton RT, and carbon-ion RT (C12-RT). Response rates were analyzed according to RECIST 1.1 criteria. RESULTS: While the primary group consisted of 34 patients (f: 16; m:18), the re-RT group included 12 patients (f: 9; m: 3). Overall response rate (ORR) for the primary group was 38.3% (N = 11), with 32.4% (N = 11) complete remissions (CR) and 5.9% (N = 2) partial remissions (PR). Stable disease (SD) was confirmed in 5.9% (N = 2), while 41.2% (N = 14) experienced progressive disease (PD). 14% (N = 5) were lost to follow up. The re-RT group had 25.0% CR and 17.0% PR with 58.0% PD. The 1-, 3-, and 5-year progression-free survival rates were 100%, 96%, and 86%, respectively, in the primary group, and 81%, 14%, and 14%, respectively, in the re-RT group. Particle irradiation (N = 11) was associated with a lower likelihood of developing a recurrence in the primary setting than photon therapy (N = 18) (OR = 0.038; p = 0.002), as well as doses ≥ 60.0 Gy (N = 15) versus < 60.0 Gy (N = 14) (OR = 0.145; p = 0.027). Risk for tumor recurrence was higher for women than for men (OR = 8.07; p = 0.014) with men having a median PFS of 136.3 months, compared to women with 66.2 months. CONCLUSION: The data suggests RT as an effective treatment option for intracranial SFT, with high LPFS and PFS rates. Radiation doses ≥ 60 Gy could be associated with lower tumor recurrence. Particle therapy may be associated with a lower risk of recurrence in the primary setting, likely due to the feasibility of higher RT-dose application.


Subject(s)
Heavy Ion Radiotherapy , Hemangiopericytoma , Solitary Fibrous Tumors , Male , Humans , Female , Protons , Neoplasm Recurrence, Local/radiotherapy , Retrospective Studies , Hemangiopericytoma/radiotherapy , Hemangiopericytoma/pathology , Hemangiopericytoma/surgery , Solitary Fibrous Tumors/radiotherapy , Solitary Fibrous Tumors/pathology , Heavy Ion Radiotherapy/adverse effects
8.
Radiat Oncol ; 19(1): 28, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38433231

ABSTRACT

BACKGROUND: To assess the tolerability and oncological results of chemoradiation in elderly patients with locally advanced adenocarcinoma of the esophagus or gastroesophageal junction. METHODS: This multi-center retrospective analysis included 86 elderly patients (≥ 65 years) with esophageal or gastroesophageal junction adenocarcinoma (median age 73 years; range 65-92 years) treated with definitive or neoadjuvant (chemo)radiotherapy. The treatment was performed at 3 large comprehensive cancer centers in Germany from 2006 to 2020. Locoregional control (LRC), progression-free survival (PFS), distant metastasis-free survival (DMFS), overall survival (OS), and treatment-associated toxicities according to CTCAE criteria v5.0 were analyzed, and parameters potentially relevant to patient outcomes were evaluated. RESULTS: Thirty-three patients (38%) were treated with neoadjuvant chemoradiation followed by surgery, while the remaining patients received definitive (chemo)radiation. The delivery of radiotherapy without dose reduction was possible in 80 patients (93%). In 66 patients (77%), concomitant chemotherapy was initially prescribed; however, during the course of therapy, 48% of patients (n = 32) required chemotherapy de-escalation due to treatment-related toxicities and comorbidities. Twenty-nine patients (34%) experienced higher-grade acute toxicities and 14 patients (16%) higher-grade late toxicities. The 2-year LRC, DMFS, PFS, and OS amounted to 72%, 49%, 46%, and 52%, respectively. In multivariate analysis, neoadjuvant chemoradiation followed by surgery was shown to be associated with significantly better PFS (p = 0.006), DMFS (p = 0.006), and OS (p = 0.004) compared with all non-surgical treatments (pooled definitive radiotherapy and chemoradiation). No such advantage was seen over definitive chemoradiation. The majority of patients with neoadjuvant therapy received standard chemoradiotherapy without dose reduction (n = 24/33, 73%). In contrast, concurrent chemotherapy was only possible in 62% of patients undergoing definitive radiotherapy (n = 33/53), and most of these patients required dose-reduction or modification of chemotherapy (n = 23/33, 70%). CONCLUSIONS: In our analysis, omission of chemotherapy or adjustment of chemotherapy dose during definitive radiotherapy was necessary for the overwhelming majority of elderly esophageal cancer patients not eligible for surgery, and hence resulted in reduced PFS and OS. Therefore, optimization of non-surgical approaches and the identification of potential predictive factors for safe administration of concurrent chemotherapy in elderly patients with (gastro)esophageal adenocarcinoma is required.


Subject(s)
Adenocarcinoma , Esophageal Neoplasms , Stomach Neoplasms , Aged , Humans , Retrospective Studies , Esophagogastric Junction , Esophageal Neoplasms/therapy , Adenocarcinoma/therapy
9.
Cancers (Basel) ; 16(6)2024 03 19.
Article in English | MEDLINE | ID: mdl-38539544

ABSTRACT

PURPOSE: The Ethos (Varian Medical Systems) radiotherapy device combines semi-automated anatomy detection and plan generation for cone beam computer tomography (CBCT)-based daily online adaptive radiotherapy (oART). However, CBCT offers less soft tissue contrast than magnetic resonance imaging (MRI). This work aims to present the clinical workflow of CBCT-based oART with shuttle-based offline MR guidance. METHODS: From February to November 2023, 31 patients underwent radiotherapy on the Ethos (Varian, Palo Alto, CA, USA) system with machine learning (ML)-supported daily oART. Moreover, patients received weekly MRI in treatment position, which was utilized for daily plan adaptation, via a shuttle-based system. Initial and adapted treatment plans were generated using the Ethos treatment planning system. Patient clinical data, fractional session times (MRI + shuttle transport + positioning, adaptation, QA, RT delivery) and plan selection were assessed for all fractions in all patients. RESULTS: In total, 737 oART fractions were applied and 118 MRIs for offline MR guidance were acquired. Primary sites of tumors were prostate (n = 16), lung (n = 7), cervix (n = 5), bladder (n = 1) and endometrium (n = 2). The treatment was completed in all patients. The median MRI acquisition time including shuttle transport and positioning to initiation of the Ethos adaptive session was 53.6 min (IQR 46.5-63.4). The median total treatment time without MRI was 30.7 min (IQR 24.7-39.2). Separately, median adaptation, plan QA and RT times were 24.3 min (IQR 18.6-32.2), 0.4 min (IQR 0.3-1,0) and 5.3 min (IQR 4.5-6.7), respectively. The adapted plan was chosen over the scheduled plan in 97.7% of cases. CONCLUSION: This study describes the first workflow to date of a CBCT-based oART combined with a shuttle-based offline approach for MR guidance. The oART duration times reported resemble the range shown by previous publications for first clinical experiences with the Ethos system.

10.
Radiother Oncol ; 194: 110215, 2024 May.
Article in English | MEDLINE | ID: mdl-38458259

ABSTRACT

PURPOSE: The European Association of Urology (EAU) proposed a risk stratification (high vs. low risk) for patients with biochemical recurrence (BR) following radical prostatectomy (RP). Here we investigated whether this stratification accurately predicts outcome, particularly in patients staged with PSMA-PET. METHODS: For this study, we used a retrospective database including 1222 PSMA-PET-staged prostate cancer patients who were treated with salvage radiotherapy (SRT) for BR, at 11 centers in 5 countries. Patients with lymph node metastases (pN1 or cN1) or unclear EAU risk group were excluded. The remaining cohort comprised 526 patients, including 132 low-risk and 394 high-risk patients. RESULTS: The median follow-up time after SRT was 31.0 months. The 3-year biochemical progression-free survival (BPFS) was 85.7 % in EAU low-risk versus 69.4 % in high-risk patients (p = 0.002). The 3-year metastasis-free survival (MFS) was 94.4 % in low-risk versus 87.6 % in high-risk patients (p = 0.005). The 3-year overall survival (OS) was 99.0 % in low-risk versus 99.6 % in high-risk patients (p = 0.925). In multivariate analysis, EAU risk group remained a statistically significant predictor of BPFS (p = 0.003, HR 2.022, 95 % CI 1.262-3.239) and MFS (p = 0.013, HR 2.986, 95 % CI 1.262-7.058). CONCLUSION: Our data support the EAU risk group definition. EAU risk grouping for BCR reliably predicted outcome in patients staged lymph node-negative after RP and with PSMA-PET before SRT. To our knowledge, this is the first study validating the EAU risk grouping in patients treated with PSMA-PET-planned SRT.


Subject(s)
Neoplasm Recurrence, Local , Prostatectomy , Prostatic Neoplasms , Salvage Therapy , Humans , Male , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/pathology , Prostatic Neoplasms/surgery , Salvage Therapy/methods , Aged , Retrospective Studies , Middle Aged , Risk Assessment , Positron-Emission Tomography , Prostate-Specific Antigen/blood , Europe
11.
J Neurooncol ; 167(2): 245-255, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38334907

ABSTRACT

PURPOSE: Surgery for recurrent glioma provides cytoreduction and tissue for molecularly informed treatment. With mostly heavily pretreated patients involved, it is unclear whether the benefits of repeat surgery outweigh its potential risks. METHODS: Patients receiving surgery for recurrent glioma WHO grade 2-4 with the goal of tissue sampling for targeted therapies were analyzed retrospectively. Complication rates (surgical, neurological) were compared to our institutional glioma surgery cohort. Tissue molecular diagnostic yield, targeted therapies and post-surgical survival rates were analyzed. RESULTS: Between 2017 and 2022, tumor board recommendation for targeted therapy through molecular diagnostics was made for 180 patients. Of these, 70 patients (38%) underwent repeat surgery. IDH-wildtype glioblastoma was diagnosed in 48 patients (69%), followed by IDH-mutant astrocytoma (n = 13; 19%) and oligodendroglioma (n = 9; 13%). Gross total resection (GTR) was achieved in 50 patients (71%). Tissue was processed for next-generation sequencing in 64 cases (91%), and for DNA methylation analysis in 58 cases (83%), while immunohistochemistry for mTOR phosphorylation was performed in 24 cases (34%). Targeted therapy was recommended in 35 (50%) and commenced in 21 (30%) cases. Postoperatively, 7 patients (11%) required revision surgery, compared to 7% (p = 0.519) and 6% (p = 0.359) of our reference cohorts of patients undergoing first and second craniotomy, respectively. Non-resolving neurological deterioration was documented in 6 cases (10% vs. 8%, p = 0.612, after first and 4%, p = 0.519, after second craniotomy). Median survival after repeat surgery was 399 days in all patients and 348 days in GBM patients after repeat GTR. CONCLUSION: Surgery for recurrent glioma provides relevant molecular diagnostic information with a direct consequence for targeted therapy under a reasonable risk of postoperative complications. With satisfactory postoperative survival it can therefore complement a multi-modal glioma therapy approach.


Subject(s)
Brain Neoplasms , Glioma , Humans , Reoperation , Brain Neoplasms/genetics , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Retrospective Studies , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/surgery , Precision Medicine , Glioma/genetics , Glioma/surgery , Glioma/pathology
12.
Article in English | MEDLINE | ID: mdl-38423224

ABSTRACT

PURPOSE: Recent experimental studies and clinical trial results might indicate that-at least for some indications-continued use of the mechanistic model for relative biological effectiveness (RBE) applied at carbon ion therapy facilities in Europe for several decades (LEM-I) may be unwarranted. We present a novel clinical framework for prostate cancer treatment planning and tumor control probability (TCP) prediction based on the modified microdosimetric kinetic model (mMKM) for particle therapy. METHODS AND MATERIALS: Treatment plans of 91 patients with prostate tumors (proton: 46, carbon ions: 45) applying 66 GyRBE [RBE = 1.1 for protons and LEM-I, (α/ß)x = 2.0 Gy, for carbon ions] in 20 fractions were recalculated using mMKM [(α/ß)x = 3.1 Gy]). Based solely on the response data of photon-irradiated patient groups stratified according to risk and usage of androgen deprivation therapy, we derived parameters for an mMKM-based Poisson-TCP model. Subsequently, new carbon and helium ion plans, adhering to prescribed biological dose criteria, were generated. These were systematically compared with the clinical experience of Japanese centers employing an analogous fractionation scheme and existing proton plans. RESULTS: mMKM predictions suggested significant biological dose deviation between the proton and carbon ion arms. Patients irradiated with protons received (3.25 ± 0.08) GyRBEmMKM/Fx, whereas patients treated with carbon ions received(2.51 ± 0.05) GyRBEmMKM/Fx. TCP predictions were (86 ± 3)% for protons and (52 ± 4)% for carbon ions, matching the clinical outcome of 85% and 50%. Newly optimized carbon ion plans, guided by the mMKM/TCP model, effectively replicated clinical data from Japanese centers. Using mMKM, helium ions exhibited similar target coverage as proton and carbon ions and improved rectum and bladder sparing compared with proton. CONCLUSIONS: Our mMKM-based model for prostate cancer treatment planning and TCP prediction was validated against clinical data for proton and carbon ion therapy, and its application was extended to helium ion therapy. Based on the data presented in this work, mMKM seems to be a good candidate for clinical biological calculations in carbon ion therapy for prostate cancer.

13.
Lancet Oncol ; 25(3): 400-410, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38423052

ABSTRACT

BACKGROUND: The extended acquisition times required for MRI limit its availability in resource-constrained settings. Consequently, accelerating MRI by undersampling k-space data, which is necessary to reconstruct an image, has been a long-standing but important challenge. We aimed to develop a deep convolutional neural network (dCNN) optimisation method for MRI reconstruction and to reduce scan times and evaluate its effect on image quality and accuracy of oncological imaging biomarkers. METHODS: In this multicentre, retrospective, cohort study, MRI data from patients with glioblastoma treated at Heidelberg University Hospital (775 patients and 775 examinations) and from the phase 2 CORE trial (260 patients, 1083 examinations, and 58 institutions) and the phase 3 CENTRIC trial (505 patients, 3147 examinations, and 139 institutions) were used to develop, train, and test dCNN for reconstructing MRI from highly undersampled single-coil k-space data with various acceleration rates (R=2, 4, 6, 8, 10, and 15). Independent testing was performed with MRIs from the phase 2/3 EORTC-26101 trial (528 patients with glioblastoma, 1974 examinations, and 32 institutions). The similarity between undersampled dCNN-reconstructed and original MRIs was quantified with various image quality metrics, including structural similarity index measure (SSIM) and the accuracy of undersampled dCNN-reconstructed MRI on downstream radiological assessment of imaging biomarkers in oncology (automated artificial intelligence-based quantification of tumour burden and treatment response) was performed in the EORTC-26101 test dataset. The public NYU Langone Health fastMRI brain test dataset (558 patients and 558 examinations) was used to validate the generalisability and robustness of the dCNN for reconstructing MRIs from available multi-coil (parallel imaging) k-space data. FINDINGS: In the EORTC-26101 test dataset, the median SSIM of undersampled dCNN-reconstructed MRI ranged from 0·88 to 0·99 across different acceleration rates, with 0·92 (95% CI 0·92-0·93) for 10-times acceleration (R=10). The 10-times undersampled dCNN-reconstructed MRI yielded excellent agreement with original MRI when assessing volumes of contrast-enhancing tumour (median DICE for spatial agreement of 0·89 [95% CI 0·88 to 0·89]; median volume difference of 0·01 cm3 [95% CI 0·00 to 0·03] equalling 0·21%; p=0·0036 for equivalence) or non-enhancing tumour or oedema (median DICE of 0·94 [95% CI 0·94 to 0·95]; median volume difference of -0·79 cm3 [95% CI -0·87 to -0·72] equalling -1·77%; p=0·023 for equivalence) in the EORTC-26101 test dataset. Automated volumetric tumour response assessment in the EORTC-26101 test dataset yielded an identical median time to progression of 4·27 months (95% CI 4·14 to 4·57) when using 10-times-undersampled dCNN-reconstructed or original MRI (log-rank p=0·80) and agreement in the time to progression in 374 (95·2%) of 393 patients with data. The dCNN generalised well to the fastMRI brain dataset, with significant improvements in the median SSIM when using multi-coil compared with single-coil k-space data (p<0·0001). INTERPRETATION: Deep-learning-based reconstruction of undersampled MRI allows for a substantial reduction of scan times, with a 10-times acceleration demonstrating excellent image quality while preserving the accuracy of derived imaging biomarkers for the assessment of oncological treatment response. Our developments are available as open source software and hold considerable promise for increasing the accessibility to MRI, pending further prospective validation. FUNDING: Deutsche Forschungsgemeinschaft (German Research Foundation) and an Else Kröner Clinician Scientist Endowed Professorship by the Else Kröner Fresenius Foundation.


Subject(s)
Deep Learning , Glioblastoma , Humans , Artificial Intelligence , Biomarkers , Cohort Studies , Glioblastoma/diagnostic imaging , Magnetic Resonance Imaging , Retrospective Studies
14.
Cancers (Basel) ; 16(4)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38398109

ABSTRACT

BACKGROUND: The current study aims to evaluate the occurrence of temporal lobe reactions and identify possible risk factors for patients who underwent particle therapy of the skull base. METHODS: 244 patients treated for skull base chordoma (n = 144) or chondrosarcoma (n = 100) at the Heidelberg Ion Beam Therapy Center (HIT) using a raster scan technique, were analyzed. Follow-up MRI-scans were matched with the initial planning images. Radiogenic reactions were contoured and analyzed based on volume and dose of treatment. RESULTS: 51 patients with chordoma (35.4%) and 30 patients (30%) with chondrosarcoma experienced at least one temporal lobe reaction within the follow-up period (median 49 months for chondrosarcoma, 62 months for chordoma). Age, irradiated volume, and dose values were significant risk factors for the development of temporal lobe reactions with the highest significance for the value of DMax-7 being defined as the dose maximum in the temporal lobe minus the 7cc with the highest dose (p = 0.000000000019; OR 1.087). CONCLUSION: Temporal lobe reactions are a common side effect after particle therapy of the skull base. We were able to develop a multivariate model, which predicted radiation reactions with a specificity of 99% and a sensitivity of 52.2%.

15.
J Clin Med ; 13(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38398270

ABSTRACT

(1) Background: External beam radiotherapy (EBRT) and concurrent chemotherapy, followed by brachytherapy (BT), offer a standard of care for patients with locally advanced cervical carcinoma. Conventionally, large safety margins are required to compensate for organ movement, potentially increasing toxicity. Lately, daily high-quality cone beam CT (CBCT)-guided adaptive radiotherapy, aided by artificial intelligence (AI), became clinically available. Thus, online treatment plans can be adapted to the current position of the tumor and the adjacent organs at risk (OAR), while the patient is lying on the treatment couch. We sought to evaluate the potential of this new technology, including a weekly shuttle-based 3T-MRI scan in various treatment positions for tumor evaluation and for decreasing treatment-related side effects. (2) Methods: This is a prospective one-armed phase-II trial consisting of 40 patients with cervical carcinoma (FIGO IB-IIIC1) with an age ≥ 18 years and a Karnofsky performance score ≥ 70%. EBRT (45-50.4 Gy in 25-28 fractions with 55.0-58.8 Gy simultaneous integrated boosts to lymph node metastases) will be accompanied by weekly shuttle-based MRIs. Concurrent platinum-based chemotherapy will be given, followed by 28 Gy of BT (four fractions). The primary endpoint will be the occurrence of overall early bowel and bladder toxicity CTCAE grade 2 or higher (CTCAE v5.0). Secondary outcomes include clinical feasibility, quality of life, and imaging-based response assessment.

16.
Int J Radiat Oncol Biol Phys ; 118(5): 1192-1205, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38237810

ABSTRACT

PURPOSE: Radiation-induced cerebral contrast enhancements (RICE) are frequent after photon and particularly proton radiation therapy and are associated with a significant risk for neurologic morbidity. Nevertheless, risk factors are poorly understood. A more robust understanding of RICE risk factors is crucial to improve management and offer adaptive therapy at the outset and during follow-up. METHODS AND MATERIALS: We analyzed the comorbidities in detail of 190 consecutive adult patients treated at a single European national comprehensive cancer center with proton radiation therapy (54 Gy relative biological effectiveness) for LGG from 2010 to 2020 who were followed with serial clinical examinations and magnetic resonance imaging for a median 5.6 years. RESULTS: Classical vascular risk factors including age (≥50 vs <50 years: 1.6-fold; P = .0024), hypertension (2.7-fold; P = .00012), and diabetes (11.7-fold; P = .0066) were observed more frequently in the cohort that developed RICE. Dyslipidemia (2.1-fold), being overweight (2.0-fold), and smoking (2.6-fold), as well as history of previous stroke (1.7-fold), were also more frequently observed in the RICE cohort, although these factors did not reach the threshold for significance. Multivariable regression modeling supported the influence of age (P = .05), arterial hypertension (P = .01), and potentially male sex (P = .02), diabetes (P = .0008), and smoking (P = .001) on RICE occurrence over time, independent of each other and further vascular risk factors. If RICE occurred, bevacizumab treatment was 2-fold more frequently needed in the cohort with vascular risk factors, but RICE long-term prognosis did not differ between the RICE subcohorts with and without vascular risk factors. CONCLUSIONS: This is the first report in the literature demonstrating that RICE strongly shares vascular risk factors with ischemic stroke, which further enhances the nebulous understanding of the multifactorial pathophysiology of RICE. Classical vascular risk factors, especially age, hypertension, and diabetes, clearly correlated independently with RICE risk. Risk-adapted screening and management for RICE can be directly derived from these data to assist in clinical management.


Subject(s)
Diabetes Mellitus , Hypertension , Ischemic Stroke , Stroke , Adult , Humans , Male , Middle Aged , Ischemic Stroke/complications , Protons , Stroke/epidemiology , Stroke/etiology , Risk Factors , Hypertension/complications
17.
Cancers (Basel) ; 16(2)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38254756

ABSTRACT

Our study aims to identify the risk factors and dosimetry characteristics associated with capsular contracture. METHODS: We retrospectively analyzed 118 women with breast cancer who underwent PMRT following an IBR between 2010 and 2022. Patients were treated with PMRT of 50.0-50.4 Gy in 25-28 fractions. Capsular contracture was categorized according to the Baker Classification for Reconstructed Breasts. RESULTS: After a median follow-up of 22 months, the incidence of clinically relevant capsular contracture (Baker III-IV) was 22.9%. Overall, capsular contracture (Baker I-IV) occurred in 56 patients (47.5%) after a median of 9 months after PMRT. The rate of reconstruction failure/implant loss was 25.4%. In the univariate analysis, postoperative complications (prolonged pain, prolonged wound healing, seroma and swelling) and regional nodal involvement were associated with higher rates of capsular contracture (p = 0.017, OR: 2.5, 95% CI: 1.2-5.3 and p = 0.031, respectively). None of the analyzed dosimetric factors or the implant position were associated with a higher risk for capsular contracture. CONCLUSION: Postoperative complications and regional nodal involvement were associated with an increased risk of capsular contracture following breast reconstruction and PMRT, while none of the analyzed dosimetric factors were linked to a higher incidence. Additional studies are needed to identify further potential risk factors.

18.
Cancers (Basel) ; 16(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38254899

ABSTRACT

Proton therapy presents a promising modality for treating left-sided breast cancer due to its unique dose distribution. Helium ions provide increased conformality thanks to a reduced lateral scattering. Consequently, the potential clinical benefit of both techniques was explored. An explorative treatment planning study involving ten patients, previously treated with VMAT (Volumetric Modulated Arc Therapy) for 50 Gy in 25 fractions for locally advanced, node-positive breast cancer, was carried out using proton pencil beam therapy with a fixed relative biological effectiveness (RBE) of 1.1 and helium therapy with a variable RBE described by the mMKM (modified microdosimetric kinetic model). Results indicated that target coverage was improved with particle therapy for both the clinical target volume and especially the internal mammary lymph nodes compared to VMAT. Median dose value analysis revealed that proton and helium plans provided lower dose on the left anterior descending artery (LAD), heart, lungs and right breast than VMAT. Notably, helium therapy exhibited improved ipsilateral lung sparing over protons. Employing NTCP models as available in the literature, helium therapy showed a lower probability of grade ≤ 2 radiation pneumonitis (22% for photons, 5% for protons and 2% for helium ions), while both proton and helium ions reduce the probability of major coronary events with respect to VMAT.

19.
Phys Med Biol ; 69(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38164988

ABSTRACT

Objective.The field of radiotherapy is highly marked by the lack of datasets even with the availability of public datasets. Our study uses a very limited dataset to provide insights on essential parameters needed to automatically and accurately segment individual bones on planning CT images of head and neck cancer patients.Approach.The study was conducted using 30 planning CT images of real patients acquired from 5 different cohorts. 15 cases from 4 cohorts were randomly selected as training and validation datasets while the remaining were used as test datasets. Four experimental sets were formulated to explore parameters such as background patch reduction, class-dependent augmentation and incorporation of a weight map on the loss function.Main results.Our best experimental scenario resulted in a mean Dice score of 0.93 ± 0.06 for other bones (skull, mandible, scapulae, clavicles, humeri and hyoid), 0.93 ± 0.02 for ribs and 0.88 ± 0.03 for vertebrae on 7 test cases from the same cohorts as the training datasets. We compared our proposed solution approach to a retrained nnU-Net and obtained comparable results for vertebral bones while outperforming in the correct identification of the left and right instances of ribs, scapulae, humeri and clavicles. Furthermore, we evaluated the generalization capability of our proposed model on a new cohort and the mean Dice score yielded 0.96 ± 0.10 for other bones, 0.95 ± 0.07 for ribs and 0.81 ± 0.19 for vertebrae on 8 test cases.Significance.With these insights, we are challenging the utilization of an automatic and accurate bone segmentation tool into the clinical routine of radiotherapy despite the limited training datasets.


Subject(s)
Head and Neck Neoplasms , Tomography, X-Ray Computed , Humans , Tomography, X-Ray Computed/methods , Radiotherapy Planning, Computer-Assisted/methods , Spine , Skull , Image Processing, Computer-Assisted/methods
20.
Neuro Oncol ; 26(4): 701-712, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38079455

ABSTRACT

BACKGROUND: Novel radiotherapeutic modalities using carbon ions provide an increased relative biological effectiveness (RBE) compared to photons, delivering a higher biological dose while reducing radiation exposure for adjacent organs. This prospective phase 2 trial investigated bimodal radiotherapy using photons with carbon-ion (C12)-boost in patients with WHO grade 2 meningiomas following subtotal resection (Simpson grade 4 or 5). METHODS: A total of 33 patients were enrolled from July 2012 until July 2020. The study treatment comprised a C12-boost (18 Gy [RBE] in 6 fractions) applied to the macroscopic tumor in combination with photon radiotherapy (50 Gy in 25 fractions). The primary endpoint was the 3-year progression-free survival (PFS), and the secondary endpoints included overall survival, safety and treatment toxicities. RESULTS: With a median follow-up of 42 months, the 3-year estimates of PFS, local PFS and overall survival were 80.3%, 86.7%, and 89.8%, respectively. Radiation-induced contrast enhancement (RICE) was encountered in 45%, particularly in patients with periventricularly located meningiomas. Patients exhibiting RICE were mostly either asymptomatic (40%) or presented immediate neurological and radiological improvement (47%) after the administration of corticosteroids or bevacizumab in case of radiation necrosis (3/33). Treatment-associated complications occurred in 1 patient with radiation necrosis who died due to postoperative complications after resection of radiation necrosis. The study was prematurely terminated after recruiting 33 of the planned 40 patients. CONCLUSIONS: Our study demonstrates a bimodal approach utilizing photons with C12-boost may achieve a superior local PFS to conventional photon RT, but must be balanced against the potential risks of toxicities.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Meningioma/radiotherapy , Meningioma/surgery , Meningioma/pathology , Prospective Studies , Carbon/therapeutic use , Ions/therapeutic use , Meningeal Neoplasms/radiotherapy , Meningeal Neoplasms/surgery , Necrosis/drug therapy , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL
...